(Word count: 4,998)

Experimental Philosophy Meets Formal Epistemology?
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Abstract. Formal epistemology is just what it sounds like: epistemology done with formal
tools. Coinciding with the general rise in popularity of experimental philosophy, formal
epistemologists have begun to apply experimental methods in their own work. In this
entry, [ survey some of the work at the intersection of formal and experimental
epistemology. I show that experimental methods have unique roles to play when
epistemology is done formally, and I highlight some ways in which results from formal
epistemology have been used fruitfully to advance epistemically-relevant experimental
work. The upshot of this brief, incomplete survey is that formal and experimental methods
often constitute mutually informative means to epistemological ends.
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Formal epistemology is a flourishing subfield of philosophy that investigates classic
epistemic topics - such as knowledge, belief, rationality, and justification - using
logicomathematical methods. Formal epistemology is far from a new movement, tracing its
roots back at least to Aristotle’s formal theory of the syllogism and his application of this
theory in the characterization of epistémé. Indeed, given the centrality of the notion of
rationality to epistemology, and noting that formal logic traditionally developed as the
science of rational inference, one may plausibly claim that the history of formal logic itself
is a narrative belonging to the history of formal epistemology.

To note that formal epistemology has a venerable pedigree, however, is not to
suggest that its most important contributions are ancient history. On the contrary, there
has arguably never been a more exciting, productive time to be a formal epistemologist. In
part, this is because of the impressive development of formal methods. As such methods
evolve (and as we appreciate more and more useful ways to apply them), formal
epistemologists not only gain tools that could potentially lend new insight to ongoing
projects, but they are also able to approach problems using formal methods that were
previously formally intractable.

This entry focuses on another reason to be excited about formal epistemology
today: the budding interest in connecting it to experimental research. Often, it is only once
a theory is stated precisely that its empirical implications (possibly along with the fact that
it even has empirical implications) become clear. At the intersection of formal and
experimental epistemology, philosophers use logicomathematical tools to introduce
precise philosophical theory, which then enables them to apply and test that theory

experimentally. How this goes in detail depends on one’s philosophical ends.



Much of the work pursued by formal epistemologists either aims at concept
engineering or concept clarification. In either case, one explicates concepts, where
explication involves “transforming a given more or less inexact concept [the explicandum]
into an exact one [the explicatum]” (Carnap 1950, 3). In concept engineering, this is done
so that we might improve our conceptual frameworks; we replace explicanda with
explicata that better assist us in achieving epistemic ends. Alternatively, in concept
clarification, philosophers explicate concepts to shed new light on the nature and
implications of those explicanda; the goal is to illuminate rather than replace explicanda.

This distinction is especially important to keep in mind when one is deciding
whether an explication is satisfactory. Carnap (1950) helpfully proposes four desiderata
for explication evaluation; for our purposes, we may focus on two. First, an explicatum
should retain a similarity to the explicandum so that it applies in most (if not all) of the
cases in which the latter applies. Second, the explicatum should, in some sense, be
epistemically fruitful, e.g., by allowing us to learn things more efficiently.?2 But these two
desiderata can conflict; greater similarity may only be attainable at the expense of
fruitfulness and vice versa. When this happens, the concept engineer prizes fruitfulness
above similarity in the pursuit of improved conceptual schema. The concept clarifier
instead prizes similarity, as any explication only has a chance of illuminating the
explicandum insofar as its explicatum (fruitful or not) maintains the requisite resemblance.

Experiments connect to formal epistemology in different ways, depending on
whether one is pursuing concept clarification or engineering. The concept clarifier may

experimentally test the similarity of explicata to explicanda; such experiments potentially

2 Carnap more stringently requires the explicatum to be fruitful in the sense of being “useful for the
formulation of many universal statements (empirical laws [or] logical theorems [...]).”



inform - by enabling us to evaluate - work in formal epistemology. The concept engineer
may experimentally explore the fruitfulness of an explicatum; and, if an explicatum proves
fruitful, formal epistemological results can inform experimental research.3

This entry surveys such formal-experimental research. Section 2 discusses work in
which experiments test whether formal epistemological theory maintains a substantive
similarity to cognitive factors. Section 3 explores work in which formal epistemological
results fruitfully advance experimental research. Specific topics covered relate to an array
of epistemological sub-disciplines - including mainstream epistemology, the epistemology
of science, social epistemology, the general study of human reasoning, and of course formal

epistemology.

1. Experiments Informing Formal Epistemology

Formal epistemologists often use explication to shed new light on epistemic
concepts. As noted above, it is crucial to such work that explicata maintain a similarity to
explicanda. This section offers examples of experimental tests for similarity. I focus on
three topics: confirmation, explanatory reasoning, and coherence.

In Bayesian confirmation theory, formal epistemologists offer the following
explication: evidence E confirms hypothesis H (relative to a set of background beliefs K)
exactly when E raises H’s probability (conditional on K): Pr(H|E&K)>Pr(H|K).* While

Bayesians agree on that much, they disagree on the best explication of the extent to which E

3 (Schupbach, Unpublished) provides an in-depth discussion of explication, concept engineering, concept
clarification, and the bearing of experimental work on these.

4 Pr is a probability function defined over a field of propositions containing H, E, and K (where K may be
thought of as the conjunction of propositions collectively describing relevant background beliefs). The
solidus “|” may be read as “conditional on” or “given that”; accordingly, one may read the above inequality as
“the probability of H conditional on E and K is greater than the probability of H conditional on K alone.”



confirms H. The question is how to measure the strength of the above inequality. Obvious
candidates include a difference measure Cq(H,E|K)=Pr(H|E&K)-Pr(H|K) and ratio measure
Cr(H,E|K)=Pr(H|E&K)/Pr(H|K), but many others have been defended (Table 1).
Importantly, which of these explicata one adopts can make a crucial difference to
philosophical conclusions about confirmation we draw from them; e.g., Fitelson (1999)
shows that various Bayesian “resolutions” of well-known paradoxes hinge sensitively on

one’s choice of measure.

Table 1. Some alternative Bayesian explicata for degree of confirmation

Ca(H,E|K)=Pr(H|E&K)-Pr(H|K) Cs(H,E|K)=Pr(H|E&K)-Pr(H|~E&K)
Cm(H,E|K)=Pr(E|H&K)-Pr(E|K) Ca(H,E|K)=Pr(E|H&K)-Pr(E|~H&K)
Cc(H,E|K)=Pr(H&E|K)-Pr(H|K)Pr(E|K) C:(H,E|K)=Pr(H|E&K)/Pr(H|K)
Cc(H,E|K)=1-[Pr(~H|E&K)/Pr(~H|K)] Pr(H|1E_8I;Ir(()I:IFI£)[H|K) £ Pr(H|E&K)=Pr(H|K)
C,(H,E|K)=
Pr(E|H&K)-Pr(E|~H&K z Pr(H|E&K)-Pr(H|K) .
Ck(H'ElK)zP:EE:H&K;P;EE:“'H&K; . II’r(gIK)r( =, it Pr(H|E&K)<Pr{H]K)

Considerations of similarity are crucial here. Can we verify that any one of these
measures is similar to the concept of confirmation applied in human cognition? Our
explication will only illuminate this concept to the extent that we can.> Crupi, Tentori, and
collaborators (Tentori et al. 2007; Crupi, Tentori, and Gonzalez 2007) use experiments to
investigate this question. In personal interviews, participants were informed that they had
before them one of two urns, urn A containing 30 black and 10 white balls, urn B containing
15 black and 25 white balls. The experimenter then began sampling balls from the urn.

After each of ten draws without replacement, participants assessed the extent to which the

5 This is a serious issue as some philosophers (e.g., Strawson 1963) have challenged the very idea of using
formal explication for concept clarification by arguing that formal explicata cannot maintain a close fit to
informal explicanda. See (Schupbach, Unpublished) for a discussion of this challenge and experimentation’s
role in potentially meeting it.



samples confirm the respective hypotheses that urn A/B was the chosen urn. These data
allowed Crupi and Tentori to compare theoretical degrees of confirmation derived from
candidate measures to human assessments of confirmation.

The results were as follows: Cz outperformed all other candidates in a paired t-test
comparing the average (Pearson) correlations between derived results and participant
responses; i.e., Cz proved to be a significantly better (linear) predictor of confirmation
judgments under the experimental conditions. This supports the comparative conclusion
that Cz comes closer to our notion of confirmation than the other considered Bayesian
measures. There remains the question, however, of how closely Cz - or any other measure
- fits overall with this notion. Tentori, Crupi, and Osherson (2007) present a separate
study that sheds some light on this question. In two experiments, they compare purely
probabilistic approaches to confirmation in general with human judgments of
confirmation. Their results support the conclusion that such judgments “depend on more
than probabilities over E and H.” The implication for Bayesian confirmation theory is that,
while certain measures may maintain a close resemblance to our notion of confirmation,
any such explicatum will not be able to provide a perfect fit. But what would constitute a
sufficiently good fit, and can any probabilistic account provide that? These lingering
questions call out for further (philosophical and empirical) investigation.

Formal epistemological research on explanatory reasoning focuses on explicating a
variety of attributes people look for in good explanations. Several of these “explanatory
virtues” relate an explanatory hypothesis to what is being explained (e.g., unification,

power, and consilience), while others are properties of the hypothesis alone (e.g., “internal”

6 Rusconi et al. (Forthcoming) present a series of experiments which lend further comparative support to
Cz over a variety of (Bayesian and non-Bayesian) explications of “the value of evidence.”



versions of plausibility, coherence, and simplicity). In any case, formal epistemologists
attempt to illuminate, by explicating, these virtues.

The study of the virtue of power parallels Bayesian work on confirmation. A
hypothesis H has power over an explanandum E to the extent that it makes E less
surprising (or more expected). Probabilistically, power is the flipside of confirmation;
confirmation is measured as the extent to which H is more probable in light of E, whereas
power is measured as the extent to which E is more probable given H. Accordingly, as with

confirmation, various Bayesian measures of power have been proposed (Table 2).

Table 2. Some alternative Bayesian explicata for power

Eq(E,H|K)=Pr(E|H&K)-Pr(E|K) Ec(E,H|K)=Pr(E|H&K)-Pr(E|~H&K)

Pr(E|H&K)-Pr(E|K) Em(E,H|K)=Pr(E|H&K)/Pr(E|K)
Pr(E|H&K)+Pr(E|K)

Ep(EH|K)=
Pr(E|H&K)-Pr(E|K)

, if Pr(E|H&K)=Pr(E|K)

Pr(H|E&K)-Pr(H|~E&K) E, (B H|K)= 1-Pr(E[K)
s ) &K +Pr(I~E&K) T | BB ER) b (k) <Pr(EIK)

To evaluate how similar these alternatives are to our intuitive notion of power,
Schupbach (2011) asks participants for assessments of explanatoriness in experimental
settings based closely on Tentori et al.’s ball-and-urn design (e.g., how well does the
hypothesis that urn A was chosen explain the results sampled so far?). Two analyses
support the conclusion that Es “comes significantly closer to participant judgments than
any other candidate measure.” Regarding the question of overall fit, the study reveals that
Es’s results not only sit quite closely, on average, to participant judgments, but their mean
is also centered on that of participant judgments (other measures’ results are biased, on

average, to one side of these judgments).



While the virtue of power relates hypotheses to explananda, simplicity is predicated
monadically to hypotheses alone. Experiments by Lombrozo (2007) focus on a notion of
simplicity formalized as number of causes cited by a hypothesis. Her research broaches
two questions: First, is this formal idea recognized as an explanatory virtue in actual
human reasoning (the similarity question)? Second, how do people’s judgments of
simplicity relate to their judgments of probability?

Participants are asked to diagnose an alien patient’s two symptoms by appealing
either to a single disease X or to a combination of two other diseases, Y&Z. Participants are
told that X “always causes both” symptoms, while Y and Z jointly (but not individually)
account fully for both symptoms. With this information, an overwhelming majority of
participants opt for X over Y&Z as the best diagnosis, suggesting that the number of causes
cited does indeed track a perceived explanatory virtue.

Variations on this experiment explore the relation between explanatory and
probability judgments. For example, when given the above information along with base
rates revealing that Y&Z are together more prevalent in the alien population than X,
participants still often favor the simpler diagnosis. Lombrozo notes that these findings are
consistent with the idea that people grant simple hypotheses higher prior probabilities,
which they subsequently update appropriately in light of base rate information. Bonawitz
and Lombrozo (2012) replicate these same findings with pre-school aged children.”

Experiments like the above prove useful in testing formal accounts of explanatory
virtues. And by revealing contexts in which explanatory reasoning tracks formal explicata,

this work potentially justifies the drawing of normative conclusions about human

7 For another recent study in this vein, see Pacer et al.’s (2013) investigation into whether four
computational models of overall explanatoriness “correspond to general human intuitions.”



reasoning from analyses of formal correlates. Bayesian explications of power (Table 2),
for example, imply that the more power a hypothesis has over a given explanandum, the
better confirmed it is by that explanandum (using any Bayesian measure of confirmation).
Insofar as experiments reveal contexts in which explanatory reasoning fits closely with one
of these explicata then, we gain a neat account of why explanatory reasoning may be good
in those contexts: because it reliably tracks probabilistic confirmation relations.?
Epistemologists speak of coherence vaguely as the property things have to the
extent that they fit together, dovetail, or agree. Coherence can plausibly be thought of as
another explanatory virtue; the more coherent an explanation, the better. But people also
assess beliefs, norms, choices, and values to be more or less coherent; so coherence may for
example underlie practical reasoning (Millgram and Thagard 1996). Bayesians attempt
probabilistic explications of coherence, and recent experimental work investigates whether
these accounts connect to human cognition (Harris and Hahn 2009). However, there has
been far more experimental work testing Thagard’s computational account of coherence.
This explication associates coherence-based reasoning with constraint satisfaction
(Thagard 2000). In any “coherence problem,” we hunt for an “accepted” subset of a set of
elements E={e1, ey, ..., en} which best satisfies a given set of constraints. These constraints
may link elements in a positive way (e.g., if ej implies ey, a positive constraint may require
that we accept both), or in a negative way (e.g., if j is inconsistent with ey, a negative
constraint may require that we accept only one). Each particular constraint is assigned a

weight. Thagard explicates coherence as W, the sum of the weights corresponding to the

8 The reader may wish to consult (Lombrozo, this volume) for more information regarding formal-
experimental work on explanation.



constraints that get satisfied by a particular partition of E; thus, maximizing coherence
amounts to partitioning E into two sets (accepted and rejected) in a way that maximizes W.

By specifying the nature of the elements and constraints in question, one may
distinguish varieties of coherence. Explanatory coherence, which has received the most
experimental attention, is that type of coherence in which elements are propositions and
constraints implement various explanatory conditions - e.g., “A hypothesis coheres with
what it explains” and “the more hypotheses it takes to explain something, the lower the
degree of coherence.” Thagard (1989) develops a program, “ECHO”, that computes
approximate solutions to explanatory coherence problems using a connectionist (neural
network) algorithm.

Through a series of experiments, Schank and Ranney (1991) investigate “the
relationship between human explanatory reasoning and explanatory evaluation as
implemented in ECHO.” For example, in one of their experiments, participants evaluated
the “believability” of two hypotheses, H1 and H2, in two scenarios differing only in how
many pieces of evidence one of the hypotheses (H2) explained. ECHO predicts that which
hypothesis is part of the most explanatorily coherent solution depends on which scenario
one is in. The question, for the sake of testing the similarity of this explication of
coherence, is whether participants’ judgments agree with ECHO’s predictions.

Results were favorable to Thagard’s explication. An ANOVA test revealed that
participants’ assessments of H1 did not differ significantly across the two scenarios, but
those pertaining to H2 did. Believability-ratings of H2 were significantly higher than those
of H1 only in the second scenario. All of this was as predicted by ECHO. Other

experimental tests were similarly favorable to this explicatum, leading Schank and Ranney



to conclude, “ECHO’s ability to model the subjects’ propositional evaluations well [...]
suggests that ECHO shows continued promise for predicting human explanatory
reasoning.” Schank and Ranney’s experiments test ECHO in cases where only the breadth
of explanations is varied; Read and Marcus-Newhall (1993) extend this work, confirming
the predictive accuracy of ECHO under other sorts of variations (e.g., simplicity).
Interestingly, the majority of experiments on the constraint-satisfaction notion of
coherence have not focused on testing for similarity. Rather, these use ECHO to advance
experimental psychological research on various topics - e.g., how people construct mental
models of others (Read and Miller 1993), or how humans transform complex, ambiguous
information into coherent decisions (Simon and Holyoak 2002). Here, instead of being
tested by experimental work, formal epistemology is informing experimental work. This
way of combining formal epistemology and experimentation is the primary focus of the

next section.

2. Formal Epistemology Informing Experiments

In this section, we take a brief look at recent work in which the products of formal
epistemology advance experimental research. Here, formal epistemology informs
experimental work; however, the direction of information runs in the other direction too,
as such work effectively tests the fruitfulness of an explicatum. I focus on two topics: the
conjunction fallacy and judgment aggregation.

Since Tversky and Kahneman (1983) first presented their seminal research on the
topic, psychologists have puzzled over the fact that, placed under certain conditions, a

majority of people make the probabilistically erroneous judgment that a conjunction is

10



more likely than one of its conjuncts. In the most famous example of this putative
conjunction fallacy, subjects are given the following information: “Linda is 31 years old,
single, outspoken and very bright. She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social justice, and also participated in anti-
nuclear demonstrations.” When faced with this information, a majority of participants
(85% in the original study) judge it more likely that “Linda is a bank teller and is active in
the feminist movement” than that “Linda is a bank-teller” (Tversky and Kahneman 1983).

A number of thinkers recently use the formal epistemological tools of confirmation
theory to develop a precise account of these problematic judgments (e.g., Sides et al. 2002,
Levi 2004, and Crupi, Fitelson, and Tentori 2008). Informally, the idea is simple: when
people judge that a conjunction is more likely than is one of its conjuncts, their fallacious
judgments accurately track confirmation relations. The information subjects are given
about Linda, for example, plausibly confirms the hypothesis that she is a feminist bank-
teller far more so than it does the alternative hypothesis that she is a bank-teller.

Crupi, Fitelson, and Tentori (2008) put forward a detailed account along these lines.
Where the fallacious judgment takes the form Pr(H1&H2|E)>Pr(H1|E), they point out that
cases in which participants are susceptible to the fallacy share a set of formal traits (letting
c stand for any of the measures in Table 1):

(i) Eis negatively (if at all) correlated with H1: ¢(H1,E)<0;

(i) Eis positively correlated with H2, conditional on H1: c(H2,E|H1)>0;

(iii) H1 and H2 are mildly (if at all) negatively correlated.
As Crupi, Fitelson, and Tentori prove, (i) and (ii) imply that the conjunction H1&H?2 is
better confirmed by E than H1 alone: c(H1&HZ2,E)>c(H1,E). Inspired by this result, they

hypothesize that “on conditions (i)-(iii), most participants may depart from the relevant
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probabilistic relationship between Pr(H1&H2|E) and Pr(H1|E) because of the perception
that c((H1&H2,E)>c(H1,E).”

Because this account uses the formal epistemological explication of confirmation, it
has the great advantage of being unambiguous and testable; it is “sufficiently well defined
to allow for critical examination” (Tentori, Crupi, and Russo 2013, 247). Schupbach (2012)
performs and presents an initial experimental study of this account, which aims to
establish the critical point that people are sometimes not susceptible to the fallacy in cases
that satisfy (i)-(iii). However, in their response, Tentori and Crupi (2012) point out that the
inequality c(H1&H2,E)>c(H1,E) is plausibly quite weak in Schupbach’s experiments. This
leads them to extend his study by varying the strength of the confirmation inequality
across similar cases. Their results show that the percentage of participants who commit
the fallacy varies (from 0% to nearly 100%) predictably with the confirmation relation,
strongly supporting their original account.

In another recent study, Tentori, Crupi, and Russo (2013) compare their approach
with other accounts of the fallacy. They note that these other accounts make a common
prediction: that as the probability of the added conjunct increases, so too does people’s
susceptibility to the fallacy. On their confirmation-theoretic account, this need not be the
case. The results of four different experiments vindicate their account over competitors,
concurring that “the conjunction fallacy predominantly depends on the perceived
confirmation of the added conjunct rather than its perceived probability.”

Bayesian confirmation theory has also usefully been applied in recent accounts of
the experimentally robust results of Wason’s selection task - see (Oaksford and Chater

2007, ch. 6) for areview. For example, Nickerson (1996) suggests that people’s seemingly
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irrational preferences in these tasks may be shown to “have a robust rational basis” insofar
as they track a confirmation-theoretic notion of “expected impact” of evidence (the
expected, absolute value of Cq — Table 1). Oaksford and Chater (1994, 2007) offer a similar
account using a related notion of expected decrease in uncertainty (measured using
Shannon information). The implications and value of such accounts remain open to debate,
however - see Fitelson and Hawthorne’s (2010) critical discussion.

These examples show that the tools of formal epistemology can help shed new light
on perplexing psychological issues. In these cases, Bayesian confirmation theory is
essential to the statement of new accounts of the phenomena. And the fact that these
accounts are formally explicated guides us in experimentally testing their precise
implications and predictions.

In social epistemology, philosophers study epistemic topics as they relate to groups
as opposed to individuals. For example, social epistemologists analyze what it means when
we predicate knowledge, rationality, and the like to groups of people. Formal work in
social epistemology has focused on developing and refining concepts and methods, which
are not meant to illuminate pretheoretical notions so much as to improve group
performances. In other words, formal social epistemology typically aims to engineer
precise concepts, designed to improve group judgments and decision-making.

A prime example can be found in work on judgment aggregation. To construct a
collective, group judgment out of the judgments of group members, some method of
aggregation is needed. There are a variety of aggregation methods available (averaging,
deliberation procedures, voting methods, etc.), and each is potentially good for different

purposes in different contexts - see (List 2012) and (Lyon and Pacuit 2014) for overviews.
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In a recent study, Lyon, Fidler, and Burgman (2012) run an experiment to compare
methods for aggregating individual interval judgments - e.g., the judgment that Salt Lake
City’s average elevation is between 3,500 and 5,000 feet. Participants shared interval
judgments in response to questions, along with corresponding confidence estimates (how
likely they thought it was that the true value would be found in their given interval). Each
subject was then asked for confidence estimates again, but this time regarding the interval
judgments of another participant (the goal here was to reduce an overconfidence effect).
Interval judgments were then aggregated using the following methods:

* Maximum Confidence Slating: choose the judgment with the highest associated
confidence level. MJCS uses confidence levels assigned by the judge; MECS uses those
assigned by the separate evaluator.

* Maximum Information Slating: choose the judgment with the highest associated value of
confidence level divided by interval width. M]IS uses confidence levels assigned by the
judge; MEIS uses those assigned by the separate evaluator.

* Maximum Consensus Slating (MConS): choose the interval on which the two confidence
estimates (the judge’s and evaluator’s) most closely agree.

This study produced several interesting results. First, when confidence estimates
are given for others’ judgments instead of one’s own, overconfidence is greatly reduced;
while both the confidence estimates of judges and evaluators displayed overconfidence,
this was reduced 60.5% in the latter case. This important finding gives us a potential
solution for cases in which the overconfidence of individuals is pernicious to group
performance. The study also reveals that the various aggregation methods “have different

strengths,” with different methods coming out on top on different dimensions (hit rate,
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accuracy, calibration). For example, MECS has the highest hit rate of any considered
method - meaning that the intervals it picks out contain the true value in a greater
percentage of cases than do those picked out by other means — while MConS displayed
consistently low overconfidence levels.

This experiment not only verifies that different aggregation methods are good for
different purposes, but it also gives specific guidance regarding which methods do certain
tasks well. Such information is vital when our philosophical goal is to engineer concepts
and methods that lead us more efficiently to epistemically desirable ends. Similar studies
explore the fruitfulness of other aggregation methods in other contexts. For example, these
same researchers (with additional collaborators; Wintle et al. 2013) present the early
results of a long-term study observing the forecasting performance of group predictions,

aggregated using structured (Delphi-style) deliberation in groups of diverse individuals.

3. Other Topics and Further Reading

This chapter has surveyed work in which formal and experimental methods provide
mutually informative means to epistemological ends. Experiments have been used to test
the extent to which formal epistemological explications satisfy important desiderata,
similarity and fruitfulness. And such explicative research has, in turn, advanced
epistemically-relevant experimental work, allowing for exact and precisely testable new
theories of puzzling phenomena.

The above survey is both simplified and incomplete. Interested readers should
follow relevant citations to dig more deeply into any discussed topic. Other subjects this

chapter might just as well have covered include work on causal reasoning and modeling
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(Danks, this volume; Sloman and Park, this volume), reasoning with conditionals beyond
the Wason task (Douven, this volume), the learning and emergence of conventions
(Devetag, Hosni, and Sillari 2013; Bruner et al. Forthcoming), and general issues related to
logic (Ripley, this volume). Another field of research I have sidestepped (as any useful
discussion of it would take up an entire chapter of itself) uses experiments to compare
inductive logics with “everyday rationality.” The reader might refer to (Chater et al. 2009)
for an overview of this literature, to (Oaksford and Chater 2007) for a defense of the
predominant Bayesian paradigm, and to (Unterhuber and Schurz 2013) for one recent

experimental criticism of the Bayesian approach.
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